Coffee Roasting Glossary

An Almost Comprehensive Glossary of Roasting Terms
Check Out The Crown's Online Classes.

The Roasting System


Afterburner / Oxidizer

Equipment used to destroy impurities such as hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from the smoke resulting from coffee roasting. Afterburners may be catalytic or thermal, for example. Depending on local air quality standards, afterburners may be a requirement for roasting machines/businesses above a certain size.

Atmospheric Burner

A burner type in which air and gas mix naturally at atmospheric pressure to provide appropriate mixing for complete combustion of the fuel.



These small steel balls are housed in chambers attached to a rotating central axle, usually held in place at the front and back of a drum roaster.

Bean Probe

A probe measuring the bean temperature — that of the coffee in the roaster — usually positioned so that it is in constant contact with the bean mass.

Belt Drive

A belt which transfers the power from the drum’s motor to the shaft or axle rotating the drum. (See also: Chain Drive)


The heat source on most drum roasters, which may be fueled by natural or propane gas, or alternatively may be electric. Burners may heat either the drum itself, the air before it flows through the drum, or both. Burners may be atmospheric, infrared, or powered, to name a few. 


Catalytic Afterburners / Oxidizers / Converters

Afterburners which introduce a catalyst to encourage oxidation of impurities in the roaster exhaust. This oxidizer benefits from fuel efficiency, requiring less gas than a thermal afterburner

Centrifugal Roaster

Using the principles of fluid bed roasters, centrifugal roasters mechanically and/or using airflow, create a centrifugal force and rotate the beans in a centrifuge, allowing more convection to take place per volume of roast.

Chaff Can / Collector

collection chamber, usually positioned under a cyclone for the purpose of collecting chaff to be discarded. Regular emptying will prevent overfull chambers and/or embers from catching the chaff on fire.

Chain Drive

Resembling a bike chain, this linked metal chain transfers the power from the drum’s motor to the axle rotating the drum. (See also: belt drive)


Part of the stack visible on the roof/outside of the roasting facility.

Cooling Tray

A usually perforated and open-air receptacle used to cool hot, finished roasted coffee down to ambient temperature. Coffee is evacuated into the cooling tray immediately after roasting, and is typically cooled by a fan (sometimes the same fan that powers airflow to the roaster) that draws air from the environment over the beans. Agitation via stirring arms can help cool the coffee evenly and more quickly.

Continuous Roaster

An industrial-scale roaster type where green coffee enters the machine on one end and is conveyed to the other end where it exits as roasted product. A typical style of this machine includes a long drum with a screw-like mechanism down the center. Coffee is poured into the drum and the corkscrew moves the stream of coffee continuously through the drum until it is completed, expelled, and cooled. Temperature data is collected via PIDs and the machine adjusted automatically as the coffee roasts to ensure consistency of product.


Multi-chamber compartment used to separate solids from circling air, often used in coffee roasting to rapidly siphon exhaust air from chaff and other heavy particulates. These chambers are usually located at the back of the machine and connect to the stack system above or chaff collection chamber below. 



valve or flap used to alter the rate of airflow in a roasting system.

Direct Heat Roaster

A roasting system in which the heat source of the roaster comes into direct contact with the beans as they are being roasted.


The cylindrical roasting chamber that rotates on a central axle. Often used as a proxy / metonym for the roasting machine called a drum roaster. Variations include cast iron drums (or drums with cast iron components), stainless steel drums, perforated steel drums. Sometimes called a “barrel,” especially when referring to sample roasters.

Drum Gap

An intentional, precisely aligned space left between the drum and the roaster’s faceplate. Drum misalignment may alter the spacing and prevent optimal machine operation and in worst case scenarios may lead to machine failure.

Drum Roaster

Usually cylindrical in shape, the drum roaster operates by tumbling coffee as it rotates along an axis. Heat is typically applied by gas-powered burners and hot airflow in a combination of conduction and convection heat. Paddles may be attached to the axle to encourage bean agitation. 

Drum Speed

The rotation rate of a drum in a drum roaster, usually measured in revolutions per minute (RPMs). Drum roasters may employ either fixed or variable drum speeds. Drum speed contributes to centrifugal force, and may directly affect quality due to speeds at which beans spend too much time in contact with the metal drum, which can cause such issues as scorching, broken beans or undeveloped coffee, e.g.


Environmental Probe

A probe positioned to read the temperature of the air inside the roasting system, datapoints which may be used to improve repeatability and consistency from batch to batch. Similar to an exhaust probe.


Air, smoke, and/or particulate exiting the roasting machine. Depending on the type of roaster, a portion of this air can be recirculated into the roaster, with the remaining air, smoke and particles exiting the machine through the stack, afterburner, and/or chimney.

Exhaust Probe

A probe positioned to read the temperature of the exhaust as it exits the roasting system. Can function in addition to or as an alternative to the environmental probe to provide temperature data use to improve repeatability and consistency from batch to batch.



The (usually metal) front of the coffee roaster covering the drum. It usually houses the drum door, the trier, the bean probe, sightglass, and lamp with a full-spectrum bulb. 


An inclusive, if imprecise, name for any type of impeller, rotor, etc., which may move air. Roasters may employ many styles of fan to pull ambient air into the roaster creating airflow, through the cooling tray, and/or to expel exhaust from the roaster into the stack and out of the roast system.

Fluid Bed Roaster (Air Roaster)

A roaster that uses hot air to roast and agitate the coffee in the roasting chamber, with no revolving or rotating drum. A classic example might be the original Sivetz roaster, with more recent examples including the original Loring Smart Roast models such as the A15 and Ikawa sample roasters.



An instrument for measuring the amount, content, pressure, or magnitude of a particular substance, with a visual display (usually an analog dial), of such information. Coffee roasters may have gas, electric, water and/or air gauges.



The green coffee holding compartment for storage immediately prior to releasing it into the roaster, usually positioned directly above the drum or roasting chamber.


Indirect Heat Roaster

A roasting system in which heat is applied to air moving through the system rather than directly to the system or coffee itself. Indirect heat roasters may derive their heat source from power burners, atmospheric burners, or electric heating elements and are usually reliant on fans to supply airflow.

Infrared Burner

A type of burner that supplies heat through infrared technology to the coffee roaster.



Mechanism for loading coffee — often in large quantities — into the hopper prior to roasting. There are various different types of these including grain elevators and vacuums.


Paddle / Fin

Attached either to the drum surface or central rotating axle at regular intervals, as well as to the cooling tray’s stirring arms, these specifically shaped pieces of metal agitate the beans in a regulated fashion and ensure even roasting or cooling by tumbling the beans consistently. 

Power Burner

A type of burner where both the fuel and the air are pressurized by a combustion air blower. (see also: Atmospheric Burner)


An informal name for a measuring device positioned to read the temperature in the roaster. This can be an RTD or thermocouple, for example. Probe placement may be optimized for different applications. (See also: bean probe, environment probe, exhaust probe, inlet probe, return probe.)


Recirculating-Air Roasters

These roasters recirculate a portion (the percentage depends on the machine and manufacturer) of the hot exhaust air back over the burner and into the drum/chamber during the roast process.

Return Probe

A probe positioned to read the temperature of the air as it exits the roasting system in a Recirculating-Air Roaster. In this type of closed system, rather than taking a measurement of the temperature of exhaust, the hot air returns to a chamber where it is scrubbed and recirculated. Functionally, the return probe is analogous to the exhaust probe in its ability to provide temperature data used to improve repeatability and consistency from batch to batch.


The machine that roasts coffee and/or the person operating it. Also, a company that roasts coffee.

RTD (Resistance Temperature Device/Detector)

sensor used to measure temperature. These instruments are usually comprised of a thin wire, such as platinum,copper or nickel, wrapped around a ceramic or glass core. These sensors measure temperature by having a repeatable resistance versus temperature relationship (R vs T). This correlation translates to consistent and detailed temperature readings. 


Sample Roaster

Small, often multi-barrel machines intended to produce enough roasted coffee to cup once or twice for quality evaluation (a common batch size be 100 grams), often in order to make purchasing decisions or for a quality control check on green coffee as it ages in storage, for example. (See also: sample roast.)


Storage containers often found in large scale roasteries which may be mechanically equipped to deliver high volumes of coffee to the roaster, hopper, or loader safely.


A window into the roasting chamber, used for visual assessment of the color of the roasted coffee or to observe the rate of drum revolution.

Stirring Arms (Agitators)

Fins/paddles attached to a moving gear that stirs coffee in the cooling tray to help it spread, and thus cool evenly after roasting.


Large, hollow, central column through which non-combustible/microscopic particulates and/or smoke travel from the roaster and exit the building. Chimneys positioned directly above the roaster using a straight vertical stack provide fewer opportunities than angled stacks to accumulate creosote and other impurities, which may clog columns over time and increase the risk of fires.


Tangential Roaster

This type of hybrid roaster that has a stationary roasting drum. A system of fins/paddles rotates around a horizontal axis that runs down the center of the drum mixing coffee beans and hot air.

Thermal Afterburner / Oxidizer

Afterburners which must operate at an extremely high temperature (often running at or above 1300F) in order to destroy impurities in the roaster exhaust.


An instrument that measures temperature, it consists of two wires of different metals connected at two points. This connection creates a voltage between the two junctions proportionate to the temperature difference. The measured difference is translated into a temperature reading. These instruments can be grounded and ungrounded. The two types used most usually in coffee roasting are the J type and K type (which has a higher temperature range and potentially longer lifespan).

Tryer (Trier)

A handled sampling rod that reaches into the roasting chamber, usually cylindrical in shape and mounted on the faceplate of the roaster. It is used to remove a small sample of the roasted coffee at various points during the roast for visual and aromatic evaluation.

The Roasting Process



A measurement of forced air inside the roaster, can be variable and is typically used to varying degrees in all roasting types (i.e., it is not exclusive to air roasters). May be manipulated manually by employing dampeners.

Ambient Conditions

Prevailing, and often uncontrolled atmospheric and weather conditions in the roastery such as temperature and relative humidity.

Aroma Roasting

A now-infrequently used style of dark roasting to impart additional roast color and smoke/roast notes to a coffee without risking a fire. Typically executed by closing the airflow dampener and simultaneously reducing or completely cutting the gas supply to a drum roaster, usually well into and beyond second crack. Not to be confused with the aroma of roasted coffee.



the amount of green or roasted coffee that forms a single roast

Baked / Baking

Used to refer to a coffee roasted with some combination of too low of heat and/or too slowly, expressed sensorially as flattened acidity and muted flavor profile.

Bean Temperature

data captured by the bean probe.

Between-Batch Protocol

These are a set of actions roasters perform, between roasting batches of coffee to create and maintain the consistent operational temperature of the roasting system so that each batch roasts as closely as possible to the last. There are many different ways to achieve the same end – a consistent charge temperature, a consistent roast time and adherence to roast profile, and a consistent result in the cup. 


Two or more different coffees (lot, origin, processing, etc.) mixed together in specific ratios to create a synergy of flavors that match a desired flavor profile. Blends may be created before or after roasting, each with differing advantages and drawbacks.


non-technical term for a disc-like cavity visible on the surface of the bean which occurs during roasting. Blowouts may be caused by trapped moisture and/or carbon dioxide gas heating under the bean’s outer layers and escaping the cellulose rapidly. This build up and release may happen if the bean is exposed to excessive heat after first crack, or with improperly dried green coffee.


Caramelization (Sugar Browning)

The oxidation of sugars which, in coffee roasting, often results in a sweet, nutty flavor. This is a non-enzymatic browning reaction. The reaction needs heat to occur, as it requires not only the breakdown of sugar, but also the removal of water from the material, the latter being achieved by evaporation. However, unlike the Maillard reaction, caramelization is pyrolytic

The reaction time and temperature depend on the type of sugar(s) involved. Caramelization results in the recomposition of carbohydrates (sugars) into long polymer chains giving coffee its brown color. The brown colors are produced by three groups of polymers: caramelans, caramelens, and caramelins, the process also results in the release of volatile aromatics, such as diacetyl, that gives caramel its distinctive smell.


Silver skin of the green coffee that comes off during roasting due to the expansion of the bean volume. The silver skin adheres to the bean and is held in place by the seam along the coffee bean face. As this opens up during roasting, the silver skin, or now chaff, is released into the roasting chamber. Coffee chaff is light and the airflow of a roaster usually carries it to a separate chaff can for collection. It is also flammable and may smolder for hours if ignited and left unattended.


to load, or to begin the roast. Charging the hopper means loading it with green coffee while charging the drum or roaster means beginning the roast.

Color Change

A visual indicator of the loss of moisture from the bean towards the end of the drying stage of the roast. Green coffee becomes progressively more yellow in appearance, associated with the beginning of the Maillard stage. Color change in the coffee will continue throughout Maillard Reactions from yellow to orange to light brown, and after first crack will progressively darken towards blackish hues if left to continue roasting.


Heat transfer in the roaster via direct contact


Heat transfer in the roaster via hot air


The evaluation of a coffee sample using a standardized method of assessing attributes associated with aroma and taste and a standardized form to collect the resulting data, used as a quality control measure to assess sensory characteristics, inherent green coffee defects, roast defects, production roast quality, etc.

Cupping Form

quality control tool used to capture evaluations and scores regarding specific coffee lots. Different forms may be used in conjunction with specific protocols in order to evaluate a particular set of attributes and/or for a particular purpose (e.g., one might use a different set of protocols and forms for evaluating production roasts and sample roasts).


Degassing / Off-gassing

the release of gases, such as carbon dioxide, from the cellulose structure of roasted coffee beans. This phenomenon is most evident during the first few days after roasting. 

Development Stage

Usually used to refer to the coffee’s progression or duration after the beginning of first crack (sometimes “Time After Crack” or “Post-Crack Development”). Considered one of the three main roast stages. The coffee is at the most exothermic and fragile state during this stage of the roast; the beans release moisture, gases and thermal energy into the drum. The development stage is considered a crucial time during which the chemical reactions that have taken place previously, including sugar and acid development and the roaster’s influence on the body of the resulting roasted coffee, are further expressed and the coffee’s final flavor profile is resolved. The development stage ends when the coffee is dropped into the cooling tray, effectively completing the roast.


To discharge the roasted beans from the machine at the end of the roast, e.g., I dropped the roast at 12 minutes or the drop temperature was 415 F

Dry Distillation

Heating of a material (green coffee) at higher temperatures, which often produces gases. In coffee roasting, as one example, as the temperature continues increasing, this process involves a next step, pyrolysis.

Drying Stage

The first roast stage, lasting from the initial charging of the drum/chamber until the beginning of Maillard stage. This phase, which is evidently endothermic, is marked by a lightening of the coffee color and a noticeable grassy/vegetal smell from the beans. This phase is often referred to as the “enzymatic stage,” “dehydration stage,” or simply “stage one” of the roast. 


Endothermic Reaction

A chemical reaction that relies on a constant transfer of energy (in roasting, heat) in order to occur. This constant uptake of heat energy depletes the environmental temperature, therefore, in order to allow this reaction to be sustainable, a continuous input of heat needs to be supplied to the roasting drum/chamber

Exothermic Reactions

A process or reaction that releases energy, usually in the form of heat, from a system (the coffee bean) into the environment (roast drum/chamber). There are many exothermic phases during coffee roasting, the first, most obvious one being the phenomenon known as first crack.

Environmental Temperature

A confusing term which can refer to either the ambient temperature in the space housing your coffee roaster or, more frequently, to refer to the measurement of convective heat measured by the exhaust, environment, and/or return probe in the roasting system.



A roast defect where one side (face) of the coffee bean is overly darkened usually due to increased contact time with the drum, often caused by a combination of incorrect drum speed (too fast or too slow) and/or an overfilled roasting chamber.

First Crack

The phenomenon of both audible and visual cracking of the roasting coffee bean. Above approximately 380 F (depending on variables including green coffee metrics and probe placement), most of the moisture in the bean will have evaporated, leaving a pocket of highly pressurized steam trapped at the center of the bean. When the pressure is too high for the now-fragile cellulose structure to withstand, it pushes out of the bean, usually at either end (the tips). In all but the rarest of circumstances, all successfully roasted coffee undergoes first crack.  

Flavor Profile

The experience of multiple attributes that comprise the taste and aroma of coffee, creating a unique flavor of that particular coffee lot/blend, which can often be attributed, in part, to place of origin, botanical variety, processing method(s), and/or roast degree.

Full Spectrum Light

light that covers the electromagnetic spectrum from infrared to near-ultraviolet. Roaster operators often use simulated full-spectrum light (color-corrected light that operates in the range of 400 – 800 nanometers) to assess coffee as it is roasting, or after it has been roasted. This light, which simulates the optical brilliance of outdoor light at noon, gives the roaster the optimum lighting with which to assess roast color.  


Maillard Reaction(s)

A series of many sugar browning reactions between sugars and either proteins or amino acids, catalyzed by heat (usually beginning at or around 302 F). The Maillard reaction contributes color to roasting coffee and complexity of flavor through the types of sugars, the amount of perceived acidity, and the structure of the viscosity. The Maillard reaction is responsible for nothing short of the development of coffee’s essential sensory character.

Maillard Stage

The second stage of roasting, after the drying stage, during which the Maillard reaction(s), Strecker Degradation, and number of other browning and complex pyrolytic reactions take place, radically modifying the chemical make-up of the bean. The advent of this stage is noted by the roaster when they see the beans change from green to yellow. The smell changes from hay to baking bread and finally roasted coffee. While the Maillard reaction and caramelization continue, the end of the Maillard stage is typically signalled by the onset of first crack. (See also: Color Change).


One-way Valve Bags

Roasted coffee packaging allowing air and gasses to flow out of but not into the package. (See also: Degassing)



A process by which organic compounds of condensed structure, mainly carbohydrates and proteins, are decomposed at high temperatures. Extreme pyrolysis leads to carbonization. Pyrolysis in coffee roasting is usually seen to occur at/after first crack and second crack. (See also: Caramelization)


Quality Control

A system of protocols and practices used to establish and assess the predetermined quality of a product. In coffee roasting this can include specific roast goals (adherence to the roast profile, measuring roast loss per batch, checking the specific roast color per lot per batch, cupping for specific flavor profile consistency, etc.)


A coffee bean whose intrinsic chemical make-up lacks the appropriate chemical compounds to complete the caramelization and browning reactions in the roaster. May be caused by underipe beans, or those chemically underdeveloped for other reasons. Many quakers may be sorted prior to export by flotation channels at the wet mill or density sorting tables at the dry mill, as browning is caused by sugars, proteins and other heavy chemical composites may be absent and thus contribute to lack of density. Although this defect is not noticeable in green coffee, these beans are evident after roasting in the cooling tray. They are pale blond to cinnamon in color and distinctly different from properly roasted coffee beans; sensorially they may express as raw or rancid peanuts, oily, or fatty, and can have significant negative consequences in a coffee’s flavor profile.


Using water to assist in cooling a completed roast batch. Many large, industrial roasters may choose to use water quenching after roasting in addition to cooling the coffee in a cooling tray. Coffee beans continue to roast internally even after they have left the drum, until the temperature has reduced throughout the whole bean. Thus, there may be a need to cool larger batches as quickly as possible in order to achieve roast consistency. If performed discretely, the water will evaporate on the beans’ surface, adding no additional weight or moisture composition to the coffee.


Radiation / Radiant Heat

Heat transfer in the roaster via electromagnetic waves. This source of heat transfer cannot be discounted; however, true radiation can only be measured consistently in a vacuum.

Rate of Rise / Rate of Change (RoR, RoC)

a measurement of the change in temperature over a given time period. E.g., the RoR at the beginning of Maillard Stage was 10F degrees every 30 seconds. Sometimes called “heat delta.”

Resting Coffee

Many roasters will suggest that you rest coffee a number of hours or days prior to first brewing. This allows the coffee to degas – releasing gases, especially carbon dioxide, that have built up in the bean as a result of roasting and can contribute to bitter and other undesirable flavors.

Roast Color / Roast Degree

The color of the finished roast. Although there have been many names given to different degrees of roast; light, medium, dark, city, french roast, etc., none actually describe a metric or objective measurement. Spectrophotometers or similar color reading devices can objectively measure reflectivity and may provide repeatability and consistency to achieve the same degree of color/roast for every batch.

Roast Curve

The charted visualization of data from temperature probe(s) collected during the roast, plotted as time (y axis) over temperature (x axis), and a part of a complete roast profile. (See also: S Curve).

Roast Loss

The difference between the weight of a batch of green coffee and the weight of the same batch once roasted (sometimes called “post-weight” and may be expressed as a percentage). This figure is important for multiple reasons, including roast data, but also inventory, forecasting and costing your product. 

Roast Profile

A roast profile can be thought of as a recipe. It is the purposefully created blueprint of the manipulation of the coffee roasting process, using the application of heat and airflow, to influence the temperature of a batch of coffee over the time of the roast. The roast profile may include (but is not limited to) its roast curve, rate of rise, roast stage times, temperatures, and roast stage percentages, end time, roast color, roast loss, etc.

Roast Stages

Three convenient divisions of a roast into segments, referred to in this glossary as Drying Stage, Maillard Stage, and Development Stage, often divided into time ratio percentages.


S Curve

The name given to the ‘normal’ roast curve produced by plotting the roast data of time (y axis) over temperature (x axis) on a graph. Left to its own devices coffee introduced into a hot drum/chamber will reduce the environmental temperature until the beans and drum/chamber air come to equilibrium. With enough energy input, the coffee, as an endotherm, will ascend in temperature until it exotherms at first crack, releasing energy and moisture. A roaster operator can influence this process and collate the data to create a roast profile.

Sample Roast

a small batch, often around 100g, usually roasted to a specific roast profile which encourages minimal manipulation by the roaster (operator and machine). These roasts are usually lighter in color than a standard production roast and are roasted on a sample roaster. These roasts are typically created for the purpose of evaluating the quality of the green coffee. Sample roasts of different coffees are often cupped side-by-side. As such, among the more important qualities of good sample roasts is consistency, particularly of roast loss, roast color, and roast length.


caused either by excessive drum or environment temperatures (e.g., too hot of a charge temperature) and/or a slow drum speed, scorching is caused by conductive heat contact from the drum or bean-to-bean. This roast defect presents as dark, burnt patches on the front or curved surfaces of the bean. The result is an ashy, burnt, ‘roasty’ taste to the coffee even if it is not dark in overall roast color

Second Crack

The second audible exothermic reaction the coffee beans undergo when roasting. A faster, shallower sound that first crack occurring at around 440 F, second crack is a further marker of pyrolysis and indicates an increased fracturing of the cellular matrix. Coffees taken to, through, and/or beyond second crack are typically considered “dark” in roast color.

Single Origin (S.O.)

This term can refer to coffee from one lot, farm, location, mill, or simply country depending on the person using it. It is the opposite of a blend (although, based on the loosely defined nature of S.O.s, one might create a “single origin blend” of coffees from the same farm or country, e.g.).


A roast color measuring instrument, often referred to in coffee roasting by a brand name, such as Agtron, ColorTrack, etc. This device differs from other spectrometers (such as mass spectrometers) as they only measure the intensity of electromagnetic radiation (light). By recording, in wavelengths, how much of the instrument’s light source reflects off of an object or is absorbed by it, it will give a reading, which can be translated to a roast color / degree. 

Stale Roast

Roasted coffee which has lost its freshness and flavor profile. Roasted coffee begins to stale the moment it exits the roaster. Coffee staling, as with all staling, is due to contact with oxygen and the process of oxidation. The more intense the exposure to oxygen, the faster your coffee will oxidize. There are many ways, via chemical intervention (e.g. nitrogen flushing), packaging and storage protocols (e.g., One-way valve bags), to help to slow this process down. However, you cannot fully arrest coffee staling. 


a term used to describe a phenomenon when the batch of coffee being roasted resists heat absorption. The rate of temperature rise of the coffee will slow and may dip into negative temperature deltas over time. It may also, in the most extreme cases, slow to such a degree as to not achieve first crack. In other cases, it may achieve first crack, but the slower portion of the roast may contribute to lower acidity, hollow flavors and a less complex cup. These characteristics are summed up by the nomenclature baked coffee. 

Strecker Degradation

This chemical process is dependent on the Maillard reaction, and the availability of amino acids present in the green beans. The carbonyl-grouped molecules created as a result of the Maillard reaction interact with amino acids, contributing to melanoidin production (heterogeneous, nitrogen-containing brown polymers that absorb light). The melanoidin reaction complex is also responsible for the production of aromatic compounds such as aldehydes and ketones. 


Third Crack

a tongue-in-cheek reference to coffee’s flash point, around 475F.


A roast defect where the narrow, fragile tips of the coffee beans are burnt by applying too much heat too quickly. These burns are caused by heat affecting the most fragile part of the bean, and may not be evident on other parts of the bean, or conversely, may be seen in conjunction with scorching or facing


Underdeveloped Roasts

This roast defect occurs when the chemical reactions responsible for protein and sugar browning either did not have enough time to be fully expressed, or when the coffee has had little time to develop the results of these reactions after first crack. Examples of causes may include roasting too hot and/or too fast, or dropping the coffee from the roaster into the cooling tray too quickly after first crack. The result in the cup is green, grassy, peanut kernel type flavors, with sharp sour acidity and little body. The flavors will be uncomplex and lack a true representation of the coffee’s potential.